Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system
Multifunctional hollow nanocapsules with magnetic and upconversion luminescence properties were synthesized. Hollow Fe{sub 3}O{sub 4}@SiO{sub 2} was firstly prepared by using rodlike β-FeOOH as the template followed by silica coating, calcinations and reduction. Then Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules (FeSiUCNP) were synthesized by the hydrothermal transformation of the Y(Yb{sup 3+}, Er{sup 3+})(OH)CO{sub 3} (YOC) deposited onto the surface of nanocapsules through a urea-assisted homogeneous precipitation method. The hollow nanocapsules with porous structure provide space and entrance for the drug molecules. Due to the outside shell of α-NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}, the nanomaterial shows upconverting red emission upon 980 nm NIR-light excitation. Moreover, the nanocomposites with hollow magnetite core exhibit a high relaxivity with r{sub 2} value of 183 mM{sup −1} s{sup −1}, which reveal the potential as T{sub 2}-weighted contrast agents for magnetic resonance imaging (MRI). The as-prepared nanocapsules can be performed as anti-cancer drug carriers for investigation of drug loading/release properties, which demonstrated a sustained drug release pattern and a comparable cytotoxicity with free doxorubicin (DOX). The multifunctional nanocapsules incorporated upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities have great potential for theranostic applications in cancer treatment. - Graphical abstract: Multifunctional hollow nanocapsules with upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities were synthesized for cancer treatment. - Highlights: • Multifunctional porous Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules were synthesized. • The nanocapsules show upconverting red emission upon 980 nm NIR-light excitation. • The nanocapsules exihibit potential as T{sub 2}-weighted contrast agents for MRI. • The DOX loaded nanocapsules demonstrated a comparable cytotoxicity with free DOX.
- OSTI ID:
- 22486779
- Journal Information:
- Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Vol. 229; ISSN 0022-4596; ISSN JSSCBI
- Country of Publication:
- United States
- Language:
- English
Similar Records
Synthesis and characterization of α-NaYF{sub 4}: Yb, Er nanoparticles by reverse microemulsion method
Recyclable magnetic Fe3O4@SiO2/β-NaYF4:Yb3+,Tm3+/TiO2 composites with NIR enhanced photocatalytic activity
Related Subjects
CALCINATION
CARBONATES
CONTRAST MEDIA
DELIVERY
DOXORUBICIN
ERBIUM IONS
EXCITATION
IRON OXIDES
LUMINESCENCE
NANOCOMPOSITES
NEOPLASMS
NMR IMAGING
POROUS MATERIALS
REDUCTION
SILICON OXIDES
SYNTHESIS
TOXICITY
UREA
VISIBLE RADIATION
YTTERBIUM IONS