Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany)
Electro-optical measurements on exciton-polaritons below and above the condensation threshold are performed on high quality, pin-doped microcavities with embedded GaAs quantum wells. Applying an external electric field shifts the polariton emission by hundreds of μeV both in the linear and the nonlinear regime. We study three device geometries to investigate the influence of carrier confinement in the plane of the quantum well on the electro-optical tuning properties. In the conventional micropillar geometry, the electric field tuning behavior is dominated by the effects of carrier tunneling and electric field screening that manifest in a blueshift of the polariton emission. In stark contrast, for a planar sample geometry, we can significantly extend the range of electric fields and a redshift is observed. To separate the contributions of quantum confined Stark effect and reduced exciton oscillator strength to the energy shift, we study a third sample where the etching of micropillars is stopped just above the active region. In this semi-planar geometry, exciton and polariton emissions can be measured simultaneously. As for the planar geometry, redshifts of the polariton emission are observed below and above threshold that are well reproduced by theoretical shifts.
- OSTI ID:
- 22486366
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 4 Vol. 107; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
Tunable polaritonic molecules in an open microcavity system
Effect of optically induced potential on the energy of trapped exciton polaritons below the condensation threshold