skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spin-orbit torques for current parallel and perpendicular to a domain wall

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4931429· OSTI ID:22482129
; ;  [1];  [2]; ;  [3];  [4]; ;  [5];  [6]; ;  [1];  [7];  [8]
  1. Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz (Germany)
  2. Departamento de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belen, 7, E-47011 Valladolid (Spain)
  3. Departamento Fisica Aplicada, Universidad de Salamanca, Plaza de los Caidos s/n, E-38008 Salamanca (Spain)
  4. Niels Bohr International Academy and the Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark)
  5. Institut d'Electronique Fondamentale, UMR CNRS 8622, Université Paris Sud, 91405 Orsay Cedex (France)
  6. Institut Nanosciences et Cryogénie, Université Grenoble Alpes, F-38000 Grenoble (France)
  7. Singulus Technologies AG, 63796 Kahl am Main (Germany)
  8. Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

We report field- and current-induced domain wall (DW) depinning experiments in Ta\Co{sub 20}Fe{sub 60}B{sub 20}\MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents perpendicular to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared with previously used measurements for just two field directions (parallel and perpendicular to the DW) to determine the real torque strength and shows the sensitivity of the SOT to the precise DW structure and pinning sites.

OSTI ID:
22482129
Journal Information:
Applied Physics Letters, Vol. 107, Issue 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English