skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of reduced 1/f noise in graphene field effect transistors on boron nitride substrates

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4930992· OSTI ID:22482092
 [1]
  1. Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

We have investigated the low frequency (f) flicker (also called 1/f) noise of single-layer graphene devices on h-BN (placed on SiO{sub 2}/Si) along with those on SiO{sub 2}/Si. We observe that the devices fabricated on h-BN have on average one order of magnitude lower noise amplitude compared with devices fabricated on SiO{sub 2}/Si despite having comparable mobilities at room temperature. We associate this noise reduction to the lower densities of impurities and trap sites in h-BN than in SiO{sub 2}. Furthermore, the gate voltage dependent noise amplitude shows a broad maximum at Dirac point for devices on h-BN, in contrast to the M-shaped behavior showing a minimum at Dirac point for devices on SiO{sub 2}, consistent with the reduced charge inhomogeneity (puddles) for graphene on h-BN. This study demonstrates that the use of h-BN as a substrate or dielectric can be a simple and efficient noise reduction technique valuable for electronic applications of graphene and other nanomaterials.

OSTI ID:
22482092
Journal Information:
Applied Physics Letters, Vol. 107, Issue 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English