skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Layer-transferred MoS{sub 2}/GaN PN diodes

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4930234· OSTI ID:22482058
; ; ; ;  [1]; ; ;  [2];  [1]
  1. Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
  2. Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

Electrical and optical characterization of two-dimensional/three-dimensional (2D/3D) p-molybdenum disulfide/n-gallium nitride (p-MoS{sub 2}/n-GaN) heterojunction diodes are reported. Devices were fabricated on high-quality, large-area p-MoS{sub 2} grown by chemical vapor deposition on sapphire substrates. The processed devices were transferred onto GaN/sapphire substrates, and the transferred films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). On-axis XRD spectra and surface topology obtained from AFM scans were consistent with previously grown high-quality, continuous MoS{sub 2} films. Current-voltage measurements of these diodes exhibited excellent rectification, and capacitance-voltage measurements were used to extract a conduction band offset of 0.23 eV for the transferred MoS{sub 2}/GaN heterojunction. This conduction band offset was confirmed by internal photoemission measurements. The energy band lineup of the MoS{sub 2}/GaN heterojunction is proposed here. This work demonstrates the potential of 2D/3D heterojunctions for novel device applications.

OSTI ID:
22482058
Journal Information:
Applied Physics Letters, Vol. 107, Issue 10; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English