skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and magnetic properties of La{sub 1−x}Ce{sub x}Fe{sub 1−x}Cr{sub x}O{sub 3} orthoferrite prepared by co-precipitation method

Journal Article · · Materials Research Bulletin
 [1];  [2]
  1. College of Science and Arts, Qassim University, Oyoon Aljewa (Saudi Arabia)
  2. Physics Department, Faculty of Science, Damascus University (Syrian Arab Republic)

Graphical abstract: TEM micrographs of La{sub 1−x}Ce{sub x}Fe{sub 1−x}Cr{sub x}O{sub 3} for x = 0.0. - Highlights: • The composition of La{sub 1−x}Ce{sub x}Fe{sub 1−x} Cr{sub x}O{sub 3} was prepared by co-precipitation method. • X-ray diffraction showed orthorhombic structure with space group Pnma. • With increasing Ce and Cr content, a decrease of the unit cell volume. • Enhancement in the coercivity (H{sub c}) with increasing Ce and Cr content. • Reduction of M{sub s} and M{sub r} up to x = 0.15 and increases with further increases of x. - Abstract: Nanocrystalline orthoferrites with the composition of La{sub 1−x}Ce{sub x}Fe{sub 1−x} Cr{sub x}O{sub 3} where (x = 0, 0.1, 0.15 and 0.2) were prepared by co-precipitation method. The structural and magnetic properties of the La{sub 1−x}Ce{sub x}Fe{sub 1−x}Cr{sub x}O{sub 3} system have been investigated. X-ray diffraction showed the formation of orthorhombic structure with space group Pnma for different compositions. With increasing Ce and Cr content, lattice parameters a and c were found to decrease while b increases, resulting in a decrease of the unit cell volume. The crystallite size was calculated from XRD data and compared with that obtained from TEM micrographs. Vibrating sample magnetometer measurements reveal an enhancement in the coercivity (H{sub c}) with increasing Ce and Cr content and reduction of saturation magnetization (M{sub s}) and remnant magnetization (M{sub r}) up to x = 0.15 and increases with further increases of x. The magnetic susceptibility measurements vs. temperature showed canted-antiferromagnetic (AFM) in which the Neel temperature is increasing with Ce and Cr content.

OSTI ID:
22475807
Journal Information:
Materials Research Bulletin, Vol. 66; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English