Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Microstructure of the Al-La-Ni-Fe system

Journal Article · · Crystallography Reports
 [1];  [2];  [3];  [1];  [3];  [2]
  1. Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)
  2. Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation)
  3. National Research Centre “Kurchatov Institute” (Russian Federation)

The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al{sub 85}Ni{sub 7}Fe{sub 4}La{sub 4} and Al{sub 85}Ni{sub 9}Fe{sub 2}La{sub 4} alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al{sub 4}La (Al{sub 11}La{sub 3}) particles, these alloys contain a ternary phase Al{sub 3}Ni{sub 1−x}Fe{sub x} (sp. gr. Pnma) isostructural to the Al{sub 3}Ni phase and a quaternary phase Al{sub 8}Fe{sub 2−x}Ni{sub x}La isostructural to the Al{sub 8}Fe{sub 2}Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al{sub 3}Ni{sub 1−x}Fe{sub x} and Al{sub 8}Fe{sub 2−x}Ni{sub x}La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al{sub 3}Ni{sub 1−x}Fe{sub x} and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al{sub 8}Fe{sub 2−x}Ni{sub x}La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al{sub 8}Fe{sub 2−x}Ni{sub x}La particles contain inclusions in the form of Al{sub 3}Fe δ layers.

OSTI ID:
22472499
Journal Information:
Crystallography Reports, Journal Name: Crystallography Reports Journal Issue: 1 Vol. 60; ISSN 1063-7745; ISSN CYSTE3
Country of Publication:
United States
Language:
English