Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

Journal Article · · Toxicology and Applied Pharmacology
; ; ;  [1];  [2];  [1];  [3];  [1]
  1. Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)
  2. Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)
  3. Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA (United States)

Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of silibinin against SM-induced skin injury.

OSTI ID:
22462338
Journal Information:
Toxicology and Applied Pharmacology, Journal Name: Toxicology and Applied Pharmacology Journal Issue: 1 Vol. 285; ISSN TXAPA9; ISSN 0041-008X
Country of Publication:
United States
Language:
English

Similar Records

Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries
Journal Article · Mon Oct 01 00:00:00 EDT 2012 · Toxicology and Applied Pharmacology · OSTI ID:22215921

Mustard vesicants alter expression of the endocannabinoid system in mouse skin
Journal Article · Fri Jul 15 00:00:00 EDT 2016 · Toxicology and Applied Pharmacology · OSTI ID:22689198

Silibinin attenuates allergic airway inflammation in mice
Journal Article · Fri Oct 26 00:00:00 EDT 2012 · Biochemical and Biophysical Research Communications · OSTI ID:22210301