Magnetic order and crystal structure study of YNi{sub 4}Si-type NdNi{sub 4}Si
Journal Article
·
· Journal of Solid State Chemistry
- Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)
- Université Grenoble Alpes, Inst NEEL, BP166, Grenoble F-38042 (France)
- Physics Department, Moscow State University, Moscow 119992 (Russian Federation)
- International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland)
Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the orthorhombic YNi{sub 4}Si-type (space group Cmmm) NdNi{sub 4}Si compound are presented. The magnetocaloric effect of NdNi{sub 4}Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of –3.3 J/kg K for a field change of 50 kOe near T{sub C}=12 K. Below ∼12 K, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group in a zero magnetic field. At 1.5 K, the neodymium atoms have the magnetic moment of 2.37(5) μ{sub B}. The orthorhombic crystal structure and its thermal evolution are discussed in comparison with the CaCu{sub 5}-type compound. - Graphical abstract: The NdNi{sub 4}Si supplement the series of the orthorhombic derivative of the CaCu{sub 5}-type, namely the YNi{sub 4}Si-type, RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho). Below ∼12 K in a zero applied magnetic field, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group. Compared to the CaCu{sub 5}-type NdNi{sub 4}Si compound, the YNi{sub 4}Si-type counterpart has the relatively high ferromagnetic ordering temperature (9.2 K vs. 12 K), the small magnetocaloric effect (–7.3 J/kg K vs. –3.3 J/kg K for ∆H=50 kOe), and the large magnetic anisotropy at low temperatures. In contrast with CaCu{sub 5}-type NdNi{sub 4}Si, YNi{sub 4}Si-type NdNi{sub 4}Si shows distinct hysteresis loop at 2 K.We suggest that orthorhombic distortion may be used as a prospective route for optimization of permanent magnetic properties in the family of CaCu{sub 5}-type rare earth materials. - Highlights: • Below ∼12 K the YNi{sub 4}Si-type NdNi{sub 4}Si shows a ferromagnetic ordering. • MCE of NdNi{sub 4}Si reaches value of –3.3 J/kg K in 0–50 kOe near Curie point. • NdNi{sub 4}Si exhibits b-axis ferromagnetic order with the Cmm′m magnetic space group. • Contrary to CaCu{sub 5}-type, YNi{sub 4}Si-type NdNi{sub 4}Si shows hysteresis loop at 2 K.
- OSTI ID:
- 22443550
- Journal Information:
- Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Vol. 222; ISSN 0022-4596; ISSN JSSCBI
- Country of Publication:
- United States
- Language:
- English
Similar Records
New orthorhombic derivative of CaCu{sub 5}-type structure: RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho), crystal structure and some magnetic properties
Giant magnetic coercivity in orthorhombic YNi{sub 4}Si-type SmNi{sub 4}Si compound
Giant magnetic coercivity in CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn–Cu) solid solutions
Journal Article
·
Sat Dec 14 23:00:00 EST 2013
· Journal of Solid State Chemistry
·
OSTI ID:22309059
Giant magnetic coercivity in orthorhombic YNi{sub 4}Si-type SmNi{sub 4}Si compound
Journal Article
·
Thu Oct 15 00:00:00 EDT 2015
· Journal of Solid State Chemistry
·
OSTI ID:22486814
Giant magnetic coercivity in CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn–Cu) solid solutions
Journal Article
·
Mon Dec 14 23:00:00 EST 2015
· Journal of Solid State Chemistry
·
OSTI ID:22573980
Related Subjects
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
ANISOTROPY
CURIE POINT
ENTROPY
HYSTERESIS
MAGNETIC FIELDS
MAGNETIC MOMENTS
MAGNETIC PROPERTIES
NEODYMIUM
NEUTRON DIFFRACTION
ORTHORHOMBIC LATTICES
RARE EARTH COMPOUNDS
SPACE GROUPS
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
ANISOTROPY
CURIE POINT
ENTROPY
HYSTERESIS
MAGNETIC FIELDS
MAGNETIC MOMENTS
MAGNETIC PROPERTIES
NEODYMIUM
NEUTRON DIFFRACTION
ORTHORHOMBIC LATTICES
RARE EARTH COMPOUNDS
SPACE GROUPS