skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application

Abstract

Rutile TiO{sub 2} nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl{sub 4} pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO{sub 2} nanorod arrays (H-TNRs). The TiCl{sub 4} pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl{sub 4} concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl{sub 4} pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl{sub 4}-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO{sub 2} nanorod array photoanode obtained from original TiO{sub 2} nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO{sub 2} nanorods are prepared via hydrothermal process on TiCl{sub 4}-pretreated Ti foil. • Hollow TiO{submore » 2} nanorods are obtained by hydrothermal etching of TiO{sub 2} nanorods. • TiCl{sub 4} pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO{sub 2} nanorods photoanode shows enhanced photoelectric efficiency for DSSC.« less

Authors:
 [1]; ;  [1];  [2];  [1]
  1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22443449
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 219; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; CORROSION; CORROSION RESISTANCE; CRYSTALS; EFFICIENCY; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURES; NUCLEATION; RUTILE; SOLUTIONS; TITANATES; TITANIUM CHLORIDES; TITANIUM OXIDES

Citation Formats

Xi, Min, Zhang, Yulan, Long, Lizhen, University of Chinese Academy of Sciences, Beijing 100049, and Li, Xinjun, E-mail: lixj@ms.giec.ac.cn. Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application. United States: N. p., 2014. Web. doi:10.1016/J.JSSC.2014.07.022.
Xi, Min, Zhang, Yulan, Long, Lizhen, University of Chinese Academy of Sciences, Beijing 100049, & Li, Xinjun, E-mail: lixj@ms.giec.ac.cn. Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application. United States. doi:10.1016/J.JSSC.2014.07.022.
Xi, Min, Zhang, Yulan, Long, Lizhen, University of Chinese Academy of Sciences, Beijing 100049, and Li, Xinjun, E-mail: lixj@ms.giec.ac.cn. 2014. "Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application". United States. doi:10.1016/J.JSSC.2014.07.022.
@article{osti_22443449,
title = {Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application},
author = {Xi, Min and Zhang, Yulan and Long, Lizhen and University of Chinese Academy of Sciences, Beijing 100049 and Li, Xinjun, E-mail: lixj@ms.giec.ac.cn},
abstractNote = {Rutile TiO{sub 2} nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl{sub 4} pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO{sub 2} nanorod arrays (H-TNRs). The TiCl{sub 4} pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl{sub 4} concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl{sub 4} pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl{sub 4}-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO{sub 2} nanorod array photoanode obtained from original TiO{sub 2} nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO{sub 2} nanorods are prepared via hydrothermal process on TiCl{sub 4}-pretreated Ti foil. • Hollow TiO{sub 2} nanorods are obtained by hydrothermal etching of TiO{sub 2} nanorods. • TiCl{sub 4} pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO{sub 2} nanorods photoanode shows enhanced photoelectric efficiency for DSSC.},
doi = {10.1016/J.JSSC.2014.07.022},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 219,
place = {United States},
year = 2014,
month =
}
  • Large-scale, well-aligned single crystalline TiO{sub 2} nanorod arrays were prepared on the pre-treated glass substrate by a hydrothermal approach. The as-prepared TiO{sub 2} nanorod arrays were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. X-ray diffraction results show that the main phase of TiO{sub 2} is rutile. Scanning electron microscopy and transmission electron microscopy results demonstrate that the large-scale TiO{sub 2} nanorod arrays grown on the pre-treated glass substrate are well-aligned single crystal and grow along [0 0 1] direction. The average diameter and length of the nanorods are approximately 21 and 400 nm, respectively. The photocatalyticmore » activity of TiO{sub 2} nanorod arrays was investigated by measuring the photodegradation rate of methyl blue aqueous solution under UV irradiation (254 nm). And the results indicate that TiO{sub 2} nanorod arrays exhibit relatively higher photocatalytic activity.« less
  • Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.
  • SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup −1} up to 40th cycle at 0.1 C. - Highlights: ► The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ► SnO{sub 2} nanorod bundles with tunable size by controlling concentrationmore » of SnCl{sub 4}. ► A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.« less
  • Graphical abstract: Hierarchical hollow microsphere and flower-like In{sub 2}O{sub 3} were controllable fabricated through a novel and simple hydrothermal process, and the former showed superior cataluminescence sensing performance to H{sub 2}S. Highlights: ► In{sub 2}O{sub 3} hierarchical hollow sphere were prepared via a hydrothermal route. ► The growth process of In{sub 2}O{sub 3} hierarchical hollow sphere has been investigated. ► The sensor based on prepared In{sub 2}O{sub 3} shows good sensing performance to H{sub 2}S. -- Abstract: In the present work, In{sub 2}O{sub 3} hierarchical hollow microsphere and flower-like microstructure were achieved controllably by a hydrothermal process in the sodiummore » dodecyl sulfate (SDS)-N,N-dimethyl-formamide (DMF) system. XRD, SEM, HRTEM and N{sub 2} adsorption measurements were used to characterize the as-prepared indium oxide materials and the possible mechanism for the microstructures formation was briefly discussed. The cataluminescence gas sensor based on the as-prepared In{sub 2}O{sub 3} was utilized to detect H{sub 2}S concentrations in flowing air. Comparative gas sensing results revealed that the sensor based on hierarchical hollow microsphere exhibited much higher sensing sensitivity in detecting H{sub 2}S gas than the sensor based on flower-like microstructure. The present gas sensor had a fast response time of 5 s and a recovery time of less than 25 s, furthermore, the cataluminescence intensity vs. H{sub 2}S concentration was linear in range of 2–20 μg mL{sup −1} with a detection limit of 0.5 μg mL{sup −1}. The present highly sensitive, fast-responding, and low-cost In{sub 2}O{sub 3}-based gas sensor for H{sub 2}S would have many practical applications.« less
  • Hollow silica spheres with mesoporous structure were synthesized by sol–gel/emulsion method. In the process, the surfactant, cetyltrimethylammonium bromide (CTAB) was used to stabilize the oil droplet and also used as structure direct agent. The diameter of the hollow silica spheres, ranging from 895 nm to 157 nm, can be controlled by changing the ratio of ethanol to water and the concentration of the surfactant as well. The shell thickness of the spheres decreased when the ratio of ethanol to water decreased. The proposed mechanism of the formation of silica spheres could elucidate the experimental results well. Furthermore, the resultant hollowmore » mesoporous silica spheres were then employed as support of nano-gold which was used to catalyze the isomerization reaction of propylene oxide to produce allyl alcohol. - Graphical abstract: It is the schematic mechanism for the formation of hollow mesoporous silica spheres. - Highlights: • The formation mechanism of the hollow spheres is proposed. • The isomerization of propylene oxide can be catalyzed by the nano-gold/SiO{sub 2}. • The hollow silica spheres can be prepared controllably.« less