skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [2];  [1];  [3];  [4];  [4];  [5]
  1. Virginia Tech CRC, Blacksburg, VA (United States)
  2. Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China)
  3. Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States)
  4. Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States)
  5. Department of Biology, University of North Carolina at Greensboro, NC (United States)

Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with low NQO1 expression, mitochondria play a critical role in beta-Lp redox activation. • In cancer cells with high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1.

OSTI ID:
22439932
Journal Information:
Toxicology and Applied Pharmacology, Vol. 281, Issue 3; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English