skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Image-Guided Study of Setup Reproducibility of Postmastectomy Breast Cancer Patients Treated With Inverse-Planned Intensity Modulated Radiation Therapy

Journal Article · · International Journal of Radiation Oncology, Biology and Physics

Purpose: To calculate planning target volume (PTV) margins for chest wall and regional nodal targets using daily orthogonal kilovolt (kV) imaging and to study residual setup error after kV alignment using volumetric cone-beam computed tomography (CBCT). Methods and Materials: Twenty-one postmastectomy patients were treated with intensity modulated radiation therapy with 7-mm PTV margins. Population-based PTV margins were calculated from translational shifts after daily kV positioning and/or weekly CBCT data for each of 8 patients, whose surgical clips were used as surrogates for target volumes. Errors from kV and CBCT data were mathematically combined to generate PTV margins for 3 simulated alignment workflows: (1) skin marks alone; (2) weekly kV imaging; and (3) daily kV imaging. Results: The kV data from 613 treatment fractions indicated that a 7-mm uniform margin would account for 95% of daily shifts if patients were positioned using only skin marks. Total setup errors incorporating both kV and CBCT data were larger than those from kV alone, yielding PTV expansions of 7 mm anterior–posterior, 9 mm left–right, and 9 mm superior–inferior. Required PTV margins after weekly kV imaging were similar in magnitude as alignment to skin marks, but rotational adjustments of patients were required in 32% ± 17% of treatments. These rotations would have remained uncorrected without the use of daily kV imaging. Despite the use of daily kV imaging, CBCT data taken at the treatment position indicate that an anisotropic PTV margin of 6 mm anterior–posterior, 4 mm left–right, and 8 mm superior–inferior must be retained to account for residual errors. Conclusions: Cone-beam CT provides additional information on 3-dimensional reproducibility of treatment setup for chest wall targets. Three-dimensional data indicate that a uniform 7-mm PTV margin is insufficient in the absence of daily IGRT. Interfraction movement is greater than suggested by 2-dimensional imaging, thus a margin of at least 4 to 8 mm must be retained despite the use of daily IGRT.

OSTI ID:
22423839
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 91, Issue 1; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English