skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of cobalt doping on magnetic and optical properties of indium oxide nanostructured thin film prepared by sol–gel method

Journal Article · · Materials Research Bulletin
 [1];  [2]; ;  [1]
  1. School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)
  2. Superconductors and Thin film laboratory, Department of Physics, Faculty of Science, University Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia)

Highlights: • Cobalt doped indium oxide thin films have been prepared by a sol–gel method. • The films have a thickness less than 100 nm and grain size less than 10 nm. • The lattice parameters and grain size of films decrease as Co content increase. • The optical band gap of films increases as the grain size decrease. • The films' magnetic behaviour is sensitive to ratio of oxygen defects per Co ions. - Abstract: The effect of Co doping concentration, (x = 0.025–0.2), in In{sub 2−x}Co{sub x}O{sub 3} thin film was investigated by X-rays diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet visible spectrophotometer (UV–vis) and vibrating sample magnetometer (VSM). All films were prepared by sol–gel technique followed by spin coating process. The XRD and XPS measurements indicate that Co{sup +2} has been successfully substituted in In{sup +3} site. The TEM measurement shows nanostructure morphology of the films. The doping of Co in indium oxide resulted in a decrease in the lattice parameters and grain size while the band gap increased with increasing Co concentration. Further, by comparing VSM and XPS results, the magnetic behaviour of the films were found to be sensitive to Co concentrations, oxygen vacancies and ratio of oxygen defects to Co concentrations. The magnetic behaviour of the prepared films was explained using bound magnetic polaron (BMP) model.

OSTI ID:
22420837
Journal Information:
Materials Research Bulletin, Vol. 63; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English