skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thickness and UV irradiation effects on the gas sensing properties of Te thin films

Journal Article · · Materials Research Bulletin
 [1];  [1]
  1. Department of Plasma Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

Highlights: • Tellurium thin films were prepared by thermal evaporation technique. • Tellurium thin films showed excellent gas-sensing properties to H{sub 2}S at room temperature. • Tellurium showed a remarkably enhanced response to H{sub 2}S gas under UV irradiation. • The reason of the enhanced response by UV irradiation was discussed. - Abstract: In this research, tellurium thin films were investigated for use as hydrogen sulfide gas sensors. To this end, a tellurium thin film has been deposited on Al{sub 2}O{sub 3} substrates by thermal evaporation, and the influence of thickness on the sensitivity of the tellurium thin film for measuring H{sub 2}S gas is studied. XRD patterns indicate that as the thickness increases, the crystallization improves. Observing the images obtained by SEM, it is seen that the grain size increases as the thickness increases. Studying the effect of thickness on H{sub 2}S gas measurement, it became obvious that as the thickness increases, the sensitivity decreases and the response and recovery times increase. To improve the response and recovery times of the tellurium thin film for measuring H{sub 2}S gas, the influence of UV radiation while measuring H{sub 2}S gas was also investigated. The results indicate that the response and recovery times strongly decrease using UV radiation.

OSTI ID:
22420812
Journal Information:
Materials Research Bulletin, Vol. 62; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English