Optomechanic interactions in phoxonic cavities
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France)
Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.
- OSTI ID:
- 22420187
- Journal Information:
- AIP Advances, Journal Name: AIP Advances Journal Issue: 12 Vol. 4; ISSN AAIDBI; ISSN 2158-3226
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam
Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms