skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring chirality in NMR in the presence of a time-dependent electric field

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4882698· OSTI ID:22420060
 [1]
  1. Department of Chemistry, University of California, Berkeley, Berkeley, California 94720 (United States)

Traditional nuclear magnetic resonance (NMR) experiments are “blind” to chirality since the spectra for left and right handed enantiomers are identical in an achiral medium. However, theoretical arguments have suggested that the effective Hamiltonian for spin-1/2 nuclei in the presence of electric and magnetic fields can be different for left and right handed enantiomers, thereby enabling NMR to be used to spectroscopically detect chirality even in an achiral medium. However, most proposals to detect the chiral NMR signature require measuring signals that are equivalent to picomolar concentrations for {sup 1}H nuclei, which are outside current NMR detection limits. In this work, we propose to use an AC electric field that is resonantly modulated at the Larmor frequency, thereby enhancing the effect of the chiral term by four to six orders of magnitude. We predict that a steady-state transverse magnetization, whose direction will be opposite for different enantiomers, will build up during application of an AC electric field. We also propose an experimental setup that uses a solenoid coil with an AC current to generate the necessary periodic electric fields that can be used to generate chiral signals which are equivalent to the signal from a {sup 1}H submicromolar concentration.

OSTI ID:
22420060
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English

Similar Records

Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers
Journal Article · Sun Nov 15 00:00:00 EST 2015 · Journal of Solid State Chemistry · OSTI ID:22420060

Electric-field–induced assembly and propulsion of chiral colloidal clusters
Journal Article · Mon May 04 00:00:00 EDT 2015 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:22420060

Chirality-related interactions and a mirror symmetry violation in handed nano structures
Journal Article · Mon Jul 28 00:00:00 EDT 2014 · Journal of Chemical Physics · OSTI ID:22420060