skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores

Abstract

Coarse-grained molecular dynamics simulations are used to probe the dynamic phenomena of polymer melts confined in nanopores. The simulation results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, (S(Q,Δt))/(S(Q,0)) . In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-square radius of gyration 〈R{sub g}{sup 2}〉 and the average relative shape anisotropy 〈κ{sup 2}〉 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of the confining cylinder. This was confirmed by direct visualization of the polymer chains. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering experiments (SANS). The experimentally inaccessible mean-square displacement (MSD) of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulations show a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from themore » surface.« less

Authors:
 [1];  [2]
  1. National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
  2. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
Publication Date:
OSTI Identifier:
22419811
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANISOTROPY; MOLECULAR DYNAMICS METHOD; MONOMERS; NEUTRON DIFFRACTION; POLYMERS; SIMULATION; SURFACES

Citation Formats

Carrillo, Jan-Michael Y., E-mail: carrillojy@ornl.gov, and Sumpter, Bobby G. Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores. United States: N. p., 2014. Web. doi:10.1063/1.4893055.
Carrillo, Jan-Michael Y., E-mail: carrillojy@ornl.gov, & Sumpter, Bobby G. Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores. United States. doi:10.1063/1.4893055.
Carrillo, Jan-Michael Y., E-mail: carrillojy@ornl.gov, and Sumpter, Bobby G. Thu . "Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores". United States. doi:10.1063/1.4893055.
@article{osti_22419811,
title = {Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores},
author = {Carrillo, Jan-Michael Y., E-mail: carrillojy@ornl.gov and Sumpter, Bobby G.},
abstractNote = {Coarse-grained molecular dynamics simulations are used to probe the dynamic phenomena of polymer melts confined in nanopores. The simulation results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, (S(Q,Δt))/(S(Q,0)) . In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-square radius of gyration 〈R{sub g}{sup 2}〉 and the average relative shape anisotropy 〈κ{sup 2}〉 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of the confining cylinder. This was confirmed by direct visualization of the polymer chains. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering experiments (SANS). The experimentally inaccessible mean-square displacement (MSD) of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulations show a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from the surface.},
doi = {10.1063/1.4893055},
journal = {Journal of Chemical Physics},
number = 7,
volume = 141,
place = {United States},
year = {Thu Aug 21 00:00:00 EDT 2014},
month = {Thu Aug 21 00:00:00 EDT 2014}
}
  • Coarse-grained molecular dynamics simulations are used to probe the dynamic phenomena of polymer melts confined in nanopores. The simulation results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, S(Q,t) S(Q,0) . In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-square radius of gyration R2 g and the average relative shape anisotropy κ2 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of themore » confining cylinder. This was confirmed by direct visualization of the polymer chains. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering experiments (SANS). The experimentally inaccessible mean-square displacement (MSD) of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulations show a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from the surface.« less
  • Inspired by the recent neutron spin echo experiments (NSE) designed to address the dynamic phenomena in polymer melts that are induced by interactions with a confining surface, we performedcoarse-grained molecular dynamics simulations to replicate the experimental results in order to provide new molecular insight for the observations. The results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, S(Q;Dt)/S(Q;0) , between experiments and simulations. The simulations indicate that using different chain molecular weights that are used to achieve scattering contrast results in the uneven distribution of scatterers in the radial direction because lowermore » molecular weight chains prefer to adsorb in the confining surface. In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-squared radius of gyration, R2g, and the average relative shape anisotropy k2 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of the confining cylinder. Direct visualization of the polymers in the simulation confirm the pancake-like conformation of the adsorbed chains and the presence of trains, loops and tails in the region between the adsorbed chains and the chains not in contact with the surface. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering (SANS) experiments. The experimentally inaccessible mean squared displacement of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulation shows a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from the surface.« less
  • We propose a statistical dynamical theory for the violation of the hydrodynamic Stokes-Einstein (SE) diffusion law for a spherical nanoparticle in entangled and unentangled polymer melts based on a combination of mode coupling, Brownian motion, and polymer physics ideas. The non-hydrodynamic friction coefficient is related to microscopic equilibrium structure and the length-scale-dependent polymer melt collective density fluctuation relaxation time. When local packing correlations are neglected, analytic scaling laws (with numerical prefactors) in various regimes are derived for the non-hydrodynamic diffusivity as a function of particle size, polymer radius-of-gyration, tube diameter, degree of entanglement, melt density, and temperature. Entanglement effects aremore » the origin of large SE violations (orders of magnitude mobility enhancement) which smoothly increase as the ratio of particle radius to tube diameter decreases. Various crossover conditions for the recovery of the SE law are derived, which are qualitatively distinct for unentangled and entangled melts. The dynamical influence of packing correlations due to both repulsive and interfacial attractive forces is investigated. A central finding is that melt packing fraction, temperature, and interfacial attraction strength all influence the SE violation in qualitatively different directions depending on whether the polymers are entangled or not. Entangled systems exhibit seemingly anomalous trends as a function of these variables as a consequence of the non-diffusive nature of collective density fluctuation relaxation and the different response of polymer-particle structural correlations to adsorption on the mesoscopic entanglement length scale. The theory is in surprisingly good agreement with recent melt experiments, and new parametric studies are suggested.« less
  • The qualitative predictions of the mode--mode-coupling (MMC) theory developed in the preceding paper are determined for various transport properties and time correlation functions. The degree of polymerization {ital N} dependence of the self-diffusion constant {ital D} of long flexible chain and rigid rod melts are found to be in agreement with the reptation/tube model scaling predictions. Ideal ring polymer liquids also follow a {ital D}{proportional to}{ital N}{sup {minus}2} law, but for collapsed non-Gaussian rings a stronger power law dependence is obtained. The viscoelastic properties of chain melts are derived from a linear generalized Langevin equation (GLE), which at long timesmore » consists of the usual Rouse terms plus a chain length and internal normal mode-dependent frictional contribution.« less
  • Frustration in chain packing has been proposed to play an important role in thermodynamic and dynamic properties of polymeric melts and glasses. Based on a quantitative analysis using Voronoi tessellations and large scale molecular dynamics simulations of flexible and semi-flexible polymers, we demonstrate that the rigid polymer chains have higher averaged Voronoi polyhedral volumes and significantly wider distribution of the volume due to frustration in the chain packing. Using these results, we discuss the advantage of the rigid polymers for possible enhancement of transport properties, e.g. for enhancing ionic conductivity in solid polymer electrolytes.