skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [2];  [3]
  1. Department of Neurology, Sichuan Medical Science Institute and Sichuan Provincial Hospital, Chengdu 610072 (China)
  2. Department of Radiotherapy, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China)
  3. Department of Burn and Plastic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an 223300 (China)

Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

OSTI ID:
22416846
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 454, Issue 4; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English