skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: One step synthesis of 6-oxo-cholestan-3β,5α-diol

Journal Article · · Biochemical and Biophysical Research Communications

Highlights: • Cholesterol-5,6-epoxides are metabolized into cholestane-3β,5α,6β-triol (CT) in cancer cells. • 6-Oxo-cholestan-3β,5α-diol (OCDO) is a putative metabolite of CT. • The one step syntheses of CT and OCDO from cholesterol are reported. • The one step syntheses of labelled CT and OCDO are reported. - Abstract: Cholesterol metabolism has been recently linked to cancer, highlighting the importance of the characterization of new metabolic pathways in the sterol series. One of these pathways is centered on cholesterol-5,6-epoxides (5,6-ECs). 5,6-ECs can either generate dendrogenin A, a tumor suppressor present in healthy mammalian tissues, or the carcinogenic cholestane-3β,5α,6β-triol (CT) and its putative metabolite 6-oxo-cholestan-3β,5α-diol (OCDO) in tumor cells. We are currently investigating the identification of the enzyme involved in OCDO biosynthesis, which would be highly facilitated by the use of commercially unavailable [{sup 14}C]-cholestane-3β,5α,6β-triol and [{sup 14}C]-6-oxo-cholestan-3β,5α-diol. In the present study we report the one-step synthesis of [{sup 14}C]-cholestane-3β,5α,6β-triol and [{sup 14}C]-6-oxo-cholestan-3β,5α-diol by oxidation of [{sup 14}C]-cholesterol with iodide metaperiodate (HIO{sub 4})

OSTI ID:
22416371
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 446, Issue 3; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English