skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

Abstract

Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

Authors:
; ;  [1];  [2]; ;  [1];  [3];  [1];  [1]
  1. State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)
  2. Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China)
  3. Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)
Publication Date:
OSTI Identifier:
22416329
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 446; Journal Issue: 1; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; AMP; APOPTOSIS; BACTERIA; CELL PROLIFERATION; HUMAN POPULATIONS; INHIBITION; NEOPLASMS; PATIENTS; TETRACYCLINES

Citation Formats

Tang, Chunling, Yang, Liqun, Jiang, Xiaolan, Xu, Chuan, Wang, Mei, Wang, Qinrui, Zhou, Zhansong, E-mail: zhouzhans@sina.com, Xiang, Zhonghuai, and Cui, Hongjuan, E-mail: hcui@swu.edu.cn. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells. United States: N. p., 2014. Web. doi:10.1016/J.BBRC.2014.02.043.
Tang, Chunling, Yang, Liqun, Jiang, Xiaolan, Xu, Chuan, Wang, Mei, Wang, Qinrui, Zhou, Zhansong, E-mail: zhouzhans@sina.com, Xiang, Zhonghuai, & Cui, Hongjuan, E-mail: hcui@swu.edu.cn. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells. United States. doi:10.1016/J.BBRC.2014.02.043.
Tang, Chunling, Yang, Liqun, Jiang, Xiaolan, Xu, Chuan, Wang, Mei, Wang, Qinrui, Zhou, Zhansong, E-mail: zhouzhans@sina.com, Xiang, Zhonghuai, and Cui, Hongjuan, E-mail: hcui@swu.edu.cn. 2014. "Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells". United States. doi:10.1016/J.BBRC.2014.02.043.
@article{osti_22416329,
title = {Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells},
author = {Tang, Chunling and Yang, Liqun and Jiang, Xiaolan and Xu, Chuan and Wang, Mei and Wang, Qinrui and Zhou, Zhansong, E-mail: zhouzhans@sina.com and Xiang, Zhonghuai and Cui, Hongjuan, E-mail: hcui@swu.edu.cn},
abstractNote = {Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.},
doi = {10.1016/J.BBRC.2014.02.043},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 446,
place = {United States},
year = 2014,
month = 3
}
  • Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells bymore » protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.« less
  • The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-cateninmore » phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.« less
  • Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-basedmore » chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.« less
  • MicroRNAs (miRNAs) are a series of 18–25 nucleotides length non-coding RNAs, which play critical roles in tumorigenesis. Previous study has shown that microRNA-1274a (miR-1274a) is upregulated in human gastric cancer. However, its role in gastric cancer progression remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-1274a on gastric cancer cells. We found that miR-1274a was overexpressed in gastric cancer tissues or gastric cancer cells including HGC27, MGC803, AGS, and SGC-7901 by qRT-PCR analysis. Transfection of miR-1274a markedly promoted gastric cancer cells proliferation and migration as well as induced epithelial–mesenchymal transition (EMT) of cancer cells.more » Our further examination identified FOXO4 as a target of miR-1274a, which did not influence FOXO4 mRNA expression but significantly inhibited FOXO4 protein expression. Moreover, miR-1274a overexpression activated PI3K/Akt signaling and upregulated cyclin D1, MMP-2 and MMP-9 expressions. With tumor xenografts in mice models, we also showed that miR-1274a promoted tumorigenesis of gastric cancer in vivo. In all, our study demonstrated that miR-1274a prompted gastric cancer cells growth and migration through dampening FOXO4 expression thus provided a potential target for human gastric cancer therapy. - Highlights: • MiR-1274a expression was augmented in gastric cancer. • MiR-1274a promoted proliferation, migration and induced EMT in cancer cells. • MiR-1274a directly targeted FOXO4 expression. • MiR-1274a triggered PI3K/Akt signaling in cancer cells. • MiR-1274a significantly increased tumor xenografts growth.« less
  • There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs,more » siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.« less