skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ground and excited states of zinc phthalocyanine, zinc tetrabenzoporphyrin, and azaporphyrin analogs using DFT and TDDFT with Franck-Condon analysis

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4913757· OSTI ID:22416222
; ; ;  [1]
  1. Material Science and Engineering Program, Arizona State University, Tempe, Arizona 85287 (United States)

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π{sup ∗} transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D{sub 4h} symmetry at ground state, a C{sub 4v} symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

OSTI ID:
22416222
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 9; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English