Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4913575· OSTI ID:22412721
 [1]; ; ; ;  [2];  [2]
  1. Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven (Belgium)
  2. imec, Kapeldreef 75, 3001 Leuven (Belgium)

This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕ{sub B} increase) together with R{sub ON} degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

OSTI ID:
22412721
Journal Information:
Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 8 Vol. 106; ISSN APPLAB; ISSN 0003-6951
Country of Publication:
United States
Language:
English