skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dust ion-acoustic rogue waves in a three-species ultracold quantum dusty plasmas

Journal Article · · Annals of Physics (New York)

Dust ion-acoustic (DIA) rogue waves are reported for a three-component ultracold quantum dusty plasma comprised of inertialess electrons, inertial ions, and negatively charged immobile dust particles. The nonlinear Schrödinger (NLS) equation appears for the low frequency limit. Modulation instability (MI) of the DIA waves is analyzed. Influence of the modulation wave number, ion-to-electron Fermi temperature ratio ρ and dust-to-ion background density ratio N{sub d} on the MI growth rate is discussed. The first- and second-order DIA rogue-wave solutions of the NLS equation are examined numerically. It is found that the enhancement of N{sub d} and carrier wave number can increase the envelope rogue-wave amplitudes. However, the increase of ρ reduces the envelope rogue-wave amplitudes. - Highlights: • The nonlinear Schrödinger equation is derived for the low frequency limit. • Modulational instability growth rate is discussed. • The first- and second-order dust ion-acoustic rogue waves are examined numerically.

OSTI ID:
22403419
Journal Information:
Annals of Physics (New York), Vol. 349; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-4916
Country of Publication:
United States
Language:
English