Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fierz bilinear formulation of the Maxwell–Dirac equations and symmetry reductions

Journal Article · · Annals of Physics (New York)

We study the Maxwell–Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell–Dirac equations, without any reference to gauge dependent quantities. We show how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell–Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form. - Highlights: • Maxwell–Dirac equations derived in manifestly gauge invariant tensor form. • Invariant scalar and four vector fields for four Poincaré subgroups derived, including two unusual cases. • Symmetry reduction imposed on Maxwell–Dirac equations under example subgroups. • Magnetic monopole arises for spherically symmetric case, consistent with charge quantization condition.

OSTI ID:
22403386
Journal Information:
Annals of Physics (New York), Journal Name: Annals of Physics (New York) Vol. 348; ISSN 0003-4916; ISSN APNYA6
Country of Publication:
United States
Language:
English

Similar Records

Maxwell–Dirac stress–energy tensor in terms of Fierz bilinear currents
Journal Article · Tue Mar 15 00:00:00 EDT 2016 · Annals of Physics · OSTI ID:22560302

Symmetries of electrodynamics with magnetic monopoles and the Hertz tensor
Journal Article · Wed Apr 14 23:00:00 EST 1976 · Phys. Rev., D; (United States) · OSTI ID:7365040

Multispinor symmetries for massless arbitrary spin Fierz--Pauli and Rarita--Schwinger wave equations
Journal Article · Sun Jun 01 00:00:00 EDT 1986 · J. Math. Phys. (N.Y.); (United States) · OSTI ID:5714126