Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4919359· OSTI ID:22402937
;  [1]
  1. Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolyte (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.

OSTI ID:
22402937
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 16 Vol. 117; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles
Journal Article · Wed Jun 24 00:00:00 EDT 2015 · AIP Conference Proceedings · OSTI ID:22490216

Tuning of depletion interaction in nanoparticle-surfactant systems
Journal Article · Thu Apr 24 00:00:00 EDT 2014 · AIP Conference Proceedings · OSTI ID:22269409

Aggregation in charged nanoparticles solutions induced by different interactions
Journal Article · Mon May 23 00:00:00 EDT 2016 · AIP Conference Proceedings · OSTI ID:22606252