A chimeric path to neuronal synchronization
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)
- OSTI ID:
- 22402523
- Journal Information:
- Chaos (Woodbury, N. Y.), Journal Name: Chaos (Woodbury, N. Y.) Journal Issue: 1 Vol. 25; ISSN CHAOEH; ISSN 1054-1500
- Country of Publication:
- United States
- Language:
- English
Similar Records
Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings
Dynamic behaviors in directed networks