Terahertz induced transparency in single-layer graphene
- Department of Physics, Oregon State University, Corvallis, Oregon 97331-6507 (United States)
- School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)
We show that the transmission of a terahertz (THz) pulse through single-layer graphene is strongly nonlinear. As the peak electric field of the THz pulse exceeds 50 kV/cm, the graphene becomes increasingly transparent to the THz radiation. When field strength reaches 800 kV/cm, the increased transparency corresponds to a two-fold decrease in the time-average sheet conductivity of the graphene (time averaged over the duration of the pulse). Time-resolved measurements reveal that the leading portion of the pulse creates transparency for the trailing portion, with a 10-fold suppression in sheet conductivity at the tail of the strongest THz pulse. Comparing the THz-induced transparency phenomena in different sample geometries shows that substrate-free graphene is the best geometry for maximizing the nonlinear transparency effect.
- OSTI ID:
- 22402382
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 22 Vol. 105; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
Nonlinear transmission of an intense terahertz field through monolayer graphene