Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks
We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.
- OSTI ID:
- 22398940
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 16 Vol. 106; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N{sub 2}, Ar
Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications
A highly miniaturized vacuum package for a trapped ion atomic clock
Journal Article
·
Wed Jun 15 00:00:00 EDT 2011
· Physical Review. A
·
OSTI ID:21550118
Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications
Journal Article
·
Fri Dec 31 23:00:00 EST 2010
· Journal of Applied Physics
·
OSTI ID:21538040
A highly miniaturized vacuum package for a trapped ion atomic clock
Journal Article
·
Wed May 11 20:00:00 EDT 2016
· Review of Scientific Instruments
·
OSTI ID:1259538