skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoresponsive properties of ultrathin silicon nanowires

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4904089· OSTI ID:22395446
; ; ;  [1]; ; ;  [2]
  1. Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, MM Bldg., Mawson Lakes Blvd., Mawson Lakes, South Australia 5095 (Australia)
  2. Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 2.4v Bldg., Wilhelm-Johnen St., Jülich 52428 (Germany)

Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20 nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (∼1 pW/array), good time response, and high photoresponsivity (R ∼ 2.5 × 10{sup 4 }A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40 nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices.

OSTI ID:
22395446
Journal Information:
Applied Physics Letters, Vol. 105, Issue 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English