A novel process route for the production of spherical SLS polymer powders
Journal Article
·
· AIP Conference Proceedings
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen (Germany)
Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particle size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.
- OSTI ID:
- 22391884
- Journal Information:
- AIP Conference Proceedings, Journal Name: AIP Conference Proceedings Journal Issue: 1 Vol. 1664; ISSN APCPCS; ISSN 0094-243X
- Country of Publication:
- United States
- Language:
- English
Similar Records
A novel process for production of spherical PBT powders and their processing behavior during laser beam melting
Design and scale-up of a semi-industrial downer-reactor for the rounding of irregular polymer particles
Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor
Journal Article
·
Tue Mar 08 23:00:00 EST 2016
· AIP Conference Proceedings
·
OSTI ID:22589321
Design and scale-up of a semi-industrial downer-reactor for the rounding of irregular polymer particles
Journal Article
·
Tue Mar 08 23:00:00 EST 2016
· AIP Conference Proceedings
·
OSTI ID:22589305
Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor
Journal Article
·
Fri May 22 00:00:00 EDT 2015
· AIP Conference Proceedings
·
OSTI ID:22391883