skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Damage imaging using Lamb waves for SHM applications

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4914595· OSTI ID:22391262
; ;  [1]
  1. AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.

OSTI ID:
22391262
Journal Information:
AIP Conference Proceedings, Vol. 1650, Issue 1; Conference: 41. Annual Review of Progress in Quantitative Nondestructive Evaluation, Boise, ID (United States), 20-25 Jul 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English