skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons

Journal Article · · Journal of Cosmology and Astroparticle Physics
; ; ;  [1]
  1. Enrico Fermi Institute and Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, Illinois, 60637-1433 (United States)

Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.

OSTI ID:
22369829
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2014, Issue 01; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English