skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transit timing variations for planets co-orbiting in the horseshoe regime

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic)
  2. Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity, near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetary masses and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum angular separation can also be inferred from the data. As a result, parameters derived from the observed transit timing series alone can directly provide both planetary masses scaled to the central star mass.

OSTI ID:
22365428
Journal Information:
Astrophysical Journal, Vol. 791, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

Discovery and characterization of two Neptune-mass planets orbiting HD 212729 with TESS
Journal Article · Thu Jul 20 00:00:00 EDT 2023 · Monthly Notices of the Royal Astronomical Society · OSTI ID:22365428

A HIGH-ECCENTRICITY COMPONENT IN THE DOUBLE-PLANET SYSTEM AROUND HD 163607 AND A PLANET AROUND HD 164509
Journal Article · Sun Jan 01 00:00:00 EST 2012 · Astrophysical Journal · OSTI ID:22365428

Exomoons in Systems with a Strong Perturber: Applications to α Cen AB
Journal Article · Sun Aug 01 00:00:00 EDT 2021 · The Astronomical Journal (Online) · OSTI ID:22365428