skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon synthesis in steady-state hydrogen and helium burning on accreting neutron stars

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2]
  1. National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)
  2. Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada)

Superbursts from accreting neutron stars probe nuclear reactions at extreme densities (ρ ≈ 10{sup 9} g cm{sup –3}) and temperatures (T > 10{sup 9} K). These bursts (∼1000 times more energetic than type I X-ray bursts) are most likely triggered by unstable ignition of carbon in a sea of heavy nuclei made during the rapid proton capture process (rp-process) of regular type I X-ray bursts (where the accumulated hydrogen and helium are burned). An open question is the origin of sufficient amounts of carbon, which is largely destroyed during the rp-process in X-ray bursts. We explore carbon production in steady-state burning via the rp-process, which might occur together with unstable burning in systems showing superbursts. We find that for a wide range of accretion rates and accreted helium mass fractions large amounts of carbon are produced, even for systems that accrete solar composition. This makes stable hydrogen and helium burning a viable source of carbon to trigger superbursts. We also investigate the sensitivity of the results to nuclear reactions. We find that the {sup 14}O(α, p){sup 17}F reaction rate introduces by far the largest uncertainties in the {sup 12}C yield.

OSTI ID:
22365303
Journal Information:
Astrophysical Journal, Vol. 791, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English