Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Banach spaces that realize minimal fillings

Journal Article · · Sbornik. Mathematics

It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of L{sub 1}. The spaces L{sub 1} are characterized in terms of Steiner points (medians). Bibliography: 25 titles. (paper)

OSTI ID:
22365288
Journal Information:
Sbornik. Mathematics, Journal Name: Sbornik. Mathematics Journal Issue: 4 Vol. 205; ISSN 1064-5616
Country of Publication:
United States
Language:
English

Similar Records

Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
Journal Article · Sat Jun 30 00:00:00 EDT 2001 · Sbornik. Mathematics · OSTI ID:21205618

A formula for the weight of a minimal filling of a finite metric space
Journal Article · Mon Sep 30 00:00:00 EDT 2013 · Sbornik. Mathematics · OSTI ID:22365968

Extrapolation of operators acting into quasi-Banach spaces
Journal Article · Sat Jan 30 23:00:00 EST 2016 · Sbornik. Mathematics · OSTI ID:22879389