skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae

Abstract

We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M {sub ☉} progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (∼0.3-3 rad s{sup –1} at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction ofmore » the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.« less

Authors:
; ;  [1];  [2]
  1. Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
  2. Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
Publication Date:
OSTI Identifier:
22365017
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 793; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; EXPLOSIONS; GAIN; HYDRODYNAMICS; LUMINOSITY; MASS; NEUTRON STARS; ROTATION; SIMULATION; SPIN; SUPERNOVAE; SURFACES; THREE-DIMENSIONAL CALCULATIONS; TWO-DIMENSIONAL CALCULATIONS

Citation Formats

Nakamura, Ko, Kuroda, Takami, Kotake, Kei, and Takiwaki, Tomoya. Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae. United States: N. p., 2014. Web. doi:10.1088/0004-637X/793/1/45.
Nakamura, Ko, Kuroda, Takami, Kotake, Kei, & Takiwaki, Tomoya. Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae. United States. doi:10.1088/0004-637X/793/1/45.
Nakamura, Ko, Kuroda, Takami, Kotake, Kei, and Takiwaki, Tomoya. 2014. "Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae". United States. doi:10.1088/0004-637X/793/1/45.
@article{osti_22365017,
title = {Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae},
author = {Nakamura, Ko and Kuroda, Takami and Kotake, Kei and Takiwaki, Tomoya},
abstractNote = {We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M {sub ☉} progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (∼0.3-3 rad s{sup –1} at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction of the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.},
doi = {10.1088/0004-637X/793/1/45},
journal = {Astrophysical Journal},
number = 1,
volume = 793,
place = {United States},
year = 2014,
month = 9
}
  • We present numerical results on two- (2D) and three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2 M {sub ☉} star. By changing numerical resolutions and seed perturbations systematically, we study how the postbounce dynamics are different in 2D and 3D. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the isotropic diffusion source approximation scheme, which we have updated to achieve a very high computational efficiency. All of the computed models in this work, including nine 3D models and fifteen 2D models, exhibit the revival of the stalled bounce shock, leading to the possibility ofmore » explosion. All of them are driven by the neutrino-heating mechanism, which is fostered by neutrino-driven convection and the standing-accretion-shock instability. Reflecting the stochastic nature of multi-dimensional (multi-D) neutrino-driven explosions, the blast morphology changes from model to model. However, we find that the final fate of the multi-D models, whether an explosion is obtained or not, is little affected by the explosion stochasticity. In agreement with some previous studies, higher numerical resolutions lead to slower onset of the shock revival in both 2D and 3D. Based on the self-consistent supernova models leading to the possibility of explosions, our results systematically show that the revived shock expands more energetically in 2D than in 3D.« less
  • We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effectsmore » by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.« less
  • It has been suggested that the observed rotation periods of radio pulsars might be induced by a non-axisymmetric spiral-mode instability in the turbulent region behind the stalled supernova bounce shock, even if the progenitor core was not initially rotating. In this paper, using the three-dimensional Adaptive Mesh Refinement code CASTRO with a realistic progenitor and equation of state and a simple neutrino heating and cooling scheme, we present a numerical study of the evolution in three dimensions of the rotational profile of a supernova core from collapse, through bounce and shock stagnation, to delayed explosion. By the end of ourmore » simulation ({approx}420 ms after core bounce), we do not witness significant spin-up of the proto-neutron star core left behind. However, we do see the development before the explosion of strong differential rotation in the turbulent gain region between the core and stalled shock. Shells in this region acquire high spin rates that reach {approx}150 Hz, but this region contains too little mass and angular momentum to translate, even if left behind, into rapid rotation for the full neutron star. We also find that much of the induced angular momentum is likely to be ejected in the explosion, and moreover that even if the optimal amount of induced angular momentum is retained in the core, the resulting spin period is likely to be quite modest. Nevertheless, induced periods of seconds are possible.« less
  • A major goal over the last decade has been understanding which multidimensional effects are crucial in facilitating core-collapse supernova (CCSN) explosions. Unfortunately, much of this work has necessarily assumed axisymmetry. In this work, we present analyses of simplified two-dimensional (2D) and three-dimensional (3D) CCSN models with the goal of comparing the hydrodynamics in setups that differ only in dimension. Not surprisingly, we find many differences between 2D and 3D models. While some differences are subtle and perhaps not crucial, others are dramatic and make interpreting 2D models problematic. In particular, axisymmetric models produce excess power at the largest spatial scales,more » power that has been deemed critical in previous explosion models. Nevertheless, our 3D models, which have an order of magnitude less power than 2D models on large scales, explode earlier. Since explosions occur earlier in 3D than in 2D, the vigorous large-scale sloshing is either not critical in any dimension or the explosion mechanism operates differently in 2D and 3D. On the other hand, we find that the average parcel of matter in the gain region has been exposed to net heating for up to 30% longer in 3D than in 2D, an effect we attribute to the differing characters of turbulence in 2D and 3D. We suggest that this effect plays a prominent role in producing earlier explosions in 3D. Finally, we discuss a simple model for the runaway growth of buoyant bubbles that is able to quantitatively account for the growth of the shock radius and predicts a critical luminosity relation.« less
  • We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, amore » high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.« less