Structure of Staphylococcus aureus 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase
Journal Article
·
· Acta Crystallographica. Section F
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8 (Canada)
The crystal structure of S. aureus 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase has been determined at 1.7 Å resolution in complex with formycin A. 5′-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5′-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH) and plays a key role in four metabolic processes: biological methylation, polyamine biosynthesis, methionine recycling and bacterial quorum sensing. The absence of the nucleosidase in mammalian species has implicated this enzyme as a target for antimicrobial drug design. MTAN from the pathogenic bacterium Staphylococcus aureus (SaMTAN) has been kinetically characterized and its structure has been determined in complex with the transition-state analogue formycin A (FMA) at 1.7 Å resolution. A comparison of the SaMTAN–FMA complex with available Escherichia coli MTAN structures shows strong conservation of the overall structure and in particular of the active site. The presence of an extra water molecule, which forms a hydrogen bond to the O4′ atom of formycin A in the active site of SaMTAN, produces electron withdrawal from the ribosyl group and may explain the lower catalytic efficiency that SaMTAN exhibits when metabolizing MTA and SAH relative to the E. coli enzyme. The implications of this structure for broad-based antibiotic design are discussed.
- OSTI ID:
- 22360577
- Journal Information:
- Acta Crystallographica. Section F, Journal Name: Acta Crystallographica. Section F Journal Issue: Pt 5 Vol. 64; ISSN ACSFCL; ISSN 1744-3091
- Country of Publication:
- United Kingdom
- Language:
- English
Similar Records
Molecular Determinants of Substrate Specificity in Plant 5-Methylthioadenosine Nucleosidases
Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase
Crystal Structures of the Helicobacter pylori MTAN Enzyme Reveal Specific Interactions between S-Adenosylhomocysteine and the 5'-Alkylthio Binding Subsite
Journal Article
·
Mon Dec 31 23:00:00 EST 2007
· Journal of Molecular Biology
·
OSTI ID:959731
Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase
Journal Article
·
Thu Mar 15 00:00:00 EDT 2012
· Protein Science
·
OSTI ID:1031365
Crystal Structures of the Helicobacter pylori MTAN Enzyme Reveal Specific Interactions between S-Adenosylhomocysteine and the 5'-Alkylthio Binding Subsite
Journal Article
·
Mon Nov 12 23:00:00 EST 2012
· Biochemistry
·
OSTI ID:1060588