skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis

Abstract

Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.

Authors:
; ; ;  [1]
  1. Heidelberg University Biochemistry Centre (BZH), INF 328, 69120 Heidelberg (Germany)
Publication Date:
OSTI Identifier:
22360330
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta Crystallographica. Section F; Journal Volume: 63; Journal Issue: Pt 5; Other Information: PMCID: PMC2335006; PMID: 17565194; PUBLISHER-ID: gj5018; OAI: oai:pubmedcentral.nih.gov:2335006; Copyright (c) International Union of Crystallography 2007; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United Kingdom
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CRYSTALS; RECEPTORS; RESOLUTION; SIGNALS

Citation Formats

Bange, Gert, Petzold, Georg, Wild, Klemens, and Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis. United Kingdom: N. p., 2007. Web. doi:10.1107/S1744309107020180.
Bange, Gert, Petzold, Georg, Wild, Klemens, & Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis. United Kingdom. doi:10.1107/S1744309107020180.
Bange, Gert, Petzold, Georg, Wild, Klemens, and Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de. Tue . "Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis". United Kingdom. doi:10.1107/S1744309107020180.
@article{osti_22360330,
title = {Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis},
author = {Bange, Gert and Petzold, Georg and Wild, Klemens and Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de},
abstractNote = {Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.},
doi = {10.1107/S1744309107020180},
journal = {Acta Crystallographica. Section F},
number = Pt 5,
volume = 63,
place = {United Kingdom},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}
  • L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized asmore » the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.« less
  • A putative pyridoxal kinase from B. subtilis has been cloned, overexpressed, purified and crystallized and data have been collected to 2.8 Å resolution. Pyridoxal kinases (PdxK) are able to catalyse the phosphorylation of three vitamin B{sub 6} precursors, pyridoxal, pyridoxine and pyridoxamine, to their 5′-phosphates and play an important role in the vitamin B{sub 6} salvage pathway. Recently, the thiD gene of Bacillus subtilis was found to encode an enzyme which has the activity expected of a pyridoxal kinase despite its previous assignment as an HMPP kinase owing to higher sequence similarity. As such, this enzyme would appear to representmore » a new class of ‘HMPP kinase-like’ pyridoxal kinases. B. subtilis thiD has been cloned and the protein has been overexpressed in Escherichia coli, purified and subsequently crystallized in a binary complex with ADP and Mg{sup 2+}. X-ray diffraction data have been collected from crystals to 2.8 Å resolution at 100 K. The crystals belong to a primitive tetragonal system, point group 422, and analysis of the systematic absences suggest that they belong to one of the enantiomorphic pair of space groups P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2. Consideration of the space-group symmetry and unit-cell parameters (a = b = 102.9, c = 252.6 Å, α = β = γ = 90°) suggest that the crystals contain between three and six molecules in the asymmetric unit. A full structure determination is under way to provide insights into aspects of the enzyme mechanism and substrate specificity.« less
  • Crystals of glutamate-1-semialdehyde aminotransferase (GSAT) from B. subtilis were obtained and diffraction data were collected to 2.0 Å resolution. 5-Aminolevulinic acid (ALA) is the first committed universal precursor in the tetrapyrrole-biosynthesis pathway. Plants, algae and many other bacteria synthesize ALA from glutamate by a C5 pathway in which the carbon skeleton of glutamate is converted into ALA by a series of enzymes. Glutamate-1-semialdehyde aminotransferase (GSAT) is the last enzyme in this pathway. The gene that codes for GSAT was amplified from the cDNA library of Bacillus subtilis and overexpressed in Escherichia coli strain BL21(DE3). The protein was purified and crystallized.more » Well diffracting single crystals were obtained by the hanging-drop vapour-diffusion method. Preliminary X-ray diffraction studies yielded excellent diffraction data to a resolution of 2.0 Å.« less
  • No abstract prepared.
  • Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The Bacillus subtilis YphC gene encodes an essential GTPase thought to be involved in ribosome binding and whose protein product may represent a target for the development of a novel antibacterial agent. Sequence analysis reveals that YphC belongs to the EngA family of GTPases, which uniquely contain two adjacent GTP-binding domains. Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The crystals belong to space group P2{submore » 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.71, b = 65.05, c = 110.61 Å, and have one molecule in the asymmetric unit. Data sets at three different wavelengths were collected on a single crystal to 2.5 Å resolution at the Daresbury SRS in order to solve the structure by MAD. Ultimately, analysis of YphC in complex with GDP may allow a greater understanding of the EngA family of essential GTPases.« less