skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preliminary crystallographic analysis of salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans

Journal Article · · Acta Crystallographica. Section F
;  [1]; ;  [2]
  1. Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy)
  2. Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart (Germany)

Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain P. salicylatoxidans, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. The crystals obtained give diffraction data to 2.9 Å resolution which could assist in the elucidation of the catalytic mechanism of this peculiar dioxygenase. Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. Diffraction-quality crystals of salicylate 1,2-dioxygenase were obtained using the sitting-drop vapour-diffusion method at 277 K from a solution containing 10%(w/v) ethanol, 6%(w/v) PEG 400, 0.1 M sodium acetate pH 4.6. Crystals belong to the primitive tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = 133.3, c = 191.51 Å. A complete data set at 100 K extending to a maximum resolution of 2.9 Å was collected at a wavelength of 0.8423 Å. Molecular replacement using the coordinates of known extradiol dioxygenases structures as a model has so far failed to provide a solution for salicylate 1,2-dioxygenase. Attempts are currently being made to solve the structure of the enzyme by MAD experiments using the anomalous signal of the catalytic Fe{sup II} ions. The salicylate 1,2-dioxygenase structural model will assist in the elucidation of the catalytic mechanism of this ring-fission dioxygenase from P. salicylatoxidans, which differs markedly from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate with high catalytic efficiency.

OSTI ID:
22360226
Journal Information:
Acta Crystallographica. Section F, Vol. 62, Issue Pt 6; Other Information: PMCID: PMC2243090; PMID: 16754979; PUBLISHER-ID: fw5080; OAI: oai:pubmedcentral.nih.gov:2243090; Copyright (c) International Union of Crystallography 2006; Country of input: International Atomic Energy Agency (IAEA); ISSN 1744-3091
Country of Publication:
United Kingdom
Language:
English