Central galaxies in different environments: Do they have similar properties?
Journal Article
·
· Astrophysical Journal
- Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)
- Also at Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240, China. (China)
We perform an exhaustive comparison among central galaxies from Sloan Digital Sky Survey catalogs in different local environments at 0.01 ≤ z ≤ 0.08. The central galaxies are separated into two categories: group centrals (host halos containing satellites) and field centrals (host halos without satellites). From the latter, we select two subsamples: isolated centrals and bright field centrals, both with the same magnitude limit. The stellar mass (M {sub s}) distributions of the field and group central galaxies are different, which explains why in general the field central galaxies are mainly located in the blue cloud/star-forming regions, whereas the group central galaxies are strongly biased to the red sequence/passive regions. The isolated centrals occupy the same regions as the bright field centrals since both populations have similar M {sub s} distributions. At parity of M {sub s}, the color and specific star formation rate (sSFR) distributions of the samples are similar, especially between field and group centrals. Furthermore, we find that the stellar-to-halo mass (M {sub s}-M {sub h}) relation of isolated galaxies does not depend on the color, sSFR, and morphological type. For systems without satellites, the M {sub s}-M {sub h} relation steepens at high halo masses compared to group centrals, which is a consequence of assuming a one-to-one relation between group total stellar mass and halo mass. Under the same assumption, the scatter around the M {sub s}-M {sub h} relation of centrals with satellites increases with halo mass. Our results suggest that the mass growth of central galaxies is mostly driven by the halo mass, with environment and mergers playing a secondary role.
- OSTI ID:
- 22356700
- Journal Information:
- Astrophysical Journal, Journal Name: Astrophysical Journal Journal Issue: 1 Vol. 788; ISSN ASJOAB; ISSN 0004-637X
- Country of Publication:
- United States
- Language:
- English
Similar Records
QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY
Linking galaxies to dark matter halos at z ∼ 1: Dependence of galaxy clustering on stellar mass and specific star formation rate
Clustering properties and halo masses for central galaxies in the local universe
Journal Article
·
Mon Feb 09 23:00:00 EST 2015
· Astrophysical Journal
·
OSTI ID:22364241
Linking galaxies to dark matter halos at z ∼ 1: Dependence of galaxy clustering on stellar mass and specific star formation rate
Journal Article
·
Sat Jun 20 00:00:00 EDT 2015
· Astrophysical Journal
·
OSTI ID:22883038
Clustering properties and halo masses for central galaxies in the local universe
Journal Article
·
Mon Feb 29 23:00:00 EST 2016
· Astrophysical Journal
·
OSTI ID:22886969