skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the temperature dependence of H-U{sub iso} in the riding hydrogen model

Journal Article · · Acta crystallographica. Section A, Foundations and advances (Online)
;  [1];  [2];  [3];  [4];  [5];  [1];  [6]
  1. Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany)
  2. School of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley (Australia)
  3. Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)
  4. Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany)
  5. GZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen (Germany)
  6. Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

OSTI ID:
22351156
Journal Information:
Acta crystallographica. Section A, Foundations and advances (Online), Vol. 70, Issue Pt 4; Other Information: PMCID: PMC4075069; PMID: 25970187; PUBLISHER-ID: kx5033; OAI: oai:pubmedcentral.nih.gov:4075069; Copyright (c) Jens Lübben et al. 2014; This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.; Country of input: International Atomic Energy Agency (IAEA); ISSN 2053-2733
Country of Publication:
United Kingdom
Language:
English