Magnetic inhibition of convection and the fundamental properties of low-mass stars. I. Stars with a radiative core
- Current address: Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 751 20, Sweden. (Sweden)
- Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)
Magnetic fields are hypothesized to inflate the radii of low-mass stars—defined as less massive than 0.8 M {sub ☉}—in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. Our results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly stronger than those estimated from observed coronal X-ray emission. Agreement between model predicted surface magnetic field strengths and those inferred from X-ray observations can be found by assuming that the magnetic field sources its energy from convection. This approach makes the transport of heat by convection less efficient and is akin to reduced convective mixing length methods used in other studies. Predictions for the metallicity and magnetic field strengths of the aforementioned systems are reported. We also develop an expression relating a reduction in the convective mixing length to a magnetic field strength in units of the equipartition value. Our results are compared with those from previous investigations to incorporate magnetic fields to explain the low-mass DEB radius inflation. Finally, we explore how the effects of magnetic fields might affect mass determinations using asteroseismic data and the implication of magnetic fields on exoplanet studies.
- OSTI ID:
- 22348397
- Journal Information:
- Astrophysical Journal, Journal Name: Astrophysical Journal Journal Issue: 2 Vol. 779; ISSN ASJOAB; ISSN 0004-637X
- Country of Publication:
- United States
- Language:
- English
Similar Records
Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars
TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER