skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-266: A Pitfall of a Deformable Image Registration in Lung Cancer

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888320· OSTI ID:22339945
 [1];  [2];  [3];  [4]
  1. The National Center for Global Health and Medicine, Shinjuku, Tokyo (Japan)
  2. The National Cancer Center Hospital East, Kashiwa, Chiba (Japan)
  3. Komazawa University, Setagaya, Tokyo (Japan)
  4. UT Southwestern Medical Center, Dallas, TX (United States)

Purpose: For four-dimensional (4D) planning and adaptive radiotherapy, deformable image registration (DIR) is needed and the accuracy is essential. We evaluated the accuracy of one free-downloadable DIR software library package (NiftyReg) and one commercial DIR software (MIM) in lung SBRT cancer patients. Methods: A rigid and non-rigid registrations were implemented to our in-house software. The non-rigid registration algorithm of the NiftyReg and MIM was based on the free-form deformation. The accuracy of the two software was evaluated when contoured structures to peak-inhale and peak-exhale 4DCT image data sets were measured using the dice similarity coefficient (DSC). The evaluation was performed in 20 lung SBRT patients. Results: In our visual evaluation, the eighteen cases show good agreement between the deformed structures for the peak-inhale phase and the peak-exhale phase structures (more than 0.8 DSC value). In the evaluation of the DSC in-house software, averaged DSC values of GTV and lung, heart, spinal cord, stomach and body were 0.862 and 0.979, 0.932, 0.974, 0.860, 0.998, respectively. As the Resultof the registration using the MIM program in the two cases which had less than 0.7 DSC value when analyzed using the in-house software, the DSC value were improved to 0.8. The CT images in a case with low DSC value shows the tumor was surrounded by the structure with the similar CT values, which were the chest wall or the diaphragm. Conclusion: Not only a free-downloadable DIR software but also a commercial software may provide unexpected results and there is a possibility that the results would make us misjudge the treatment planning. Therefore, we recommend that a commissioning test of any DIR software should be performed before clinical use and we should understand the characteristics of the software.

OSTI ID:
22339945
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English