skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-temperature behavior of dicesium molybdate Cs{sub 2}MoO{sub 4}: Implications for fast neutron reactors

Journal Article · · Journal of Solid State Chemistry
 [1];  [2];  [2]
  1. Institut de Recherche de Chimie Paris, CNRS—Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France)
  2. ICSM–UMR5257 CNRS/CEA/UM2/ENSCM, Site de Marcoule, Bât 426, BP 17171, 30207 Bagnols/Cèze (France)

Dicesium molybdate (Cs{sub 2}MoO{sub 4})'s thermal expansion and crystal structure have been investigated herein by high temperature X ray diffraction in conjunction with Raman spectroscopy. This first crystal-chemical insight at high temperature is aimed at predicting the thermostructural and thermomechanical behavior of this oxide formed by the accumulation of Cs and Mo fission products at the periphery of nuclear fuel rods in sodium-cooled fast reactors. Within the temperature range of the fuel's rim, Cs{sub 2}MoO{sub 4} becomes hexagonal P6{sub 3}/mmc, with disordered MoO{sub 4} tetrahedra and 2D distribution of Cs–O bonds that makes thermal axial expansion both large (50≤α{sub l}≤70 10{sup −6} °C{sup −1}, 500–800 °C) and highly anisotropic (α{sub c}−α{sub a}=67×10{sup −6} °C{sup −1}, hexagonal form). The difference with the fuel's expansion coefficient is of potential concern with respect to the cohesion of the Cs{sub 2}MoO{sub 4} surface film and the possible release of cesium radionuclides in accidental situations. - Graphical abstract: The weakness of the Cs–O bonds and the disordering of the MoO{sub 4} tetrahedra array in the high-temperature form are responsible for the huge thermal expansion of Cs{sub 2}MoO{sub 4} along the c-axis. - Highlights: • Thermomechanical behavior of Cs{sub 2}MoO{sub 4} fission products compound is studied. • High-temperature form of Cs{sub 2}MoO{sub 4} is characterized by XRD and Raman. • Thermal expansion appears very high and anisotropic. • Cohesion between Cs{sub 2}MoO{sub 4} and nuclear fuel seems questionable, and Cs release is expected.

OSTI ID:
22334286
Journal Information:
Journal of Solid State Chemistry, Vol. 215; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English