The analysis of magnesium oxide hydration in three-phase reaction system
In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.
- OSTI ID:
- 22334197
- Journal Information:
- Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Vol. 213; ISSN 0022-4596; ISSN JSSCBI
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hydrated Mg(NO/sub 3/)/sub 2/ reversible phase change compositions
Simulation of the properties of MgO-MgfCl{sub 2}-H{sub 2}O system by thermodynamic method