skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4893550· OSTI ID:22314308
 [1]; ; ;  [2]
  1. Nanomaterials Research Laboratory, Surface Engineering Division CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India)
  2. Department of Physics, National Institute of Technology, Calicut 673601 (India)

Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.

OSTI ID:
22314308
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English