skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4889798· OSTI ID:22308454
; ; ;  [1];  [2]
  1. Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)
  2. Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248 (United States)

The performance of thin film metal-insulator-metal (MIM) diodes is investigated for a variety of large and small electron affinity insulators using ultrasmooth amorphous metal as the bottom electrode. Nb{sub 2}O{sub 5}, Ta{sub 2}O{sub 5}, ZrO{sub 2}, HfO{sub 2}, Al{sub 2}O{sub 3}, and SiO{sub 2} amorphous insulators are deposited via atomic layer deposition (ALD). Reflection electron energy loss spectroscopy (REELS) is utilized to measure the band-gap energy (E{sub G}) and energy position of intrinsic sub-gap defect states for each insulator. E{sub G} of as-deposited ALD insulators are found to be Nb{sub 2}O{sub 5} = 3.8 eV, Ta{sub 2}O{sub 5} = 4.4 eV, ZrO{sub 2} = 5.4 eV, HfO{sub 2} = 5.6 eV, Al{sub 2}O{sub 3} = 6.4 eV, and SiO{sub 2} = 8.8 eV with uncertainty of ±0.2 eV. Current vs. voltage asymmetry, non-linearity, turn-on voltage, and dominant conduction mechanisms are compared. Al{sub 2}O{sub 3} and SiO{sub 2} are found to operate based on Fowler-Nordheim tunneling. Al{sub 2}O{sub 3} shows the highest asymmetry. ZrO{sub 2}, Nb{sub 2}O{sub 5}, and Ta{sub 2}O{sub 5} based diodes are found to be dominated by Frenkel-Poole emission at large biases and exhibit lower asymmetry. The electrically estimated trap energy levels for defects that dominate Frenkel-Poole conduction are found to be consistent with the energy levels of surface oxygen vacancy defects observed in REELS measurements. For HfO{sub 2}, conduction is found to be a mix of trap assisted tunneling and Frenkel-Poole emission. Insulator selection criteria in regards to MIM diodes applications are discussed.

OSTI ID:
22308454
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English