Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Performance study of LMS based adaptive algorithms for unknown system identification

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4887594· OSTI ID:22306148
;  [1]
  1. School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

OSTI ID:
22306148
Journal Information:
AIP Conference Proceedings, Journal Name: AIP Conference Proceedings Journal Issue: 1 Vol. 1605; ISSN 0094-243X; ISSN APCPCS
Country of Publication:
United States
Language:
English

Similar Records

Adaptive techniques for time-delay estimation and tracking
Conference · Fri Dec 31 23:00:00 EST 1982 · OSTI ID:6148445

Block-adaptive filtering and its application to seismic-event detection
Technical Report · Tue Mar 31 23:00:00 EST 1981 · OSTI ID:6149531

Multiprocessor implementation of adaptive digital filters
Journal Article · Wed Jun 01 00:00:00 EDT 1983 · IEEE Trans. Commun.; (United States) · OSTI ID:5342694