skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The novel phase transition of NaBi(WO{sub 4}){sub 2} under high pressure

Journal Article · · Journal of Solid State Chemistry
; ; ; ; ; ;  [1];  [2];  [1]
  1. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)
  2. College of Material and Chemistry, Changchun University of Science and Technology, Changchun 130022 (China)

The Raman and synchrotron angle-dispersive X-ray diffraction studies have been performed on NaBi(WO{sub 4}){sub 2} under high pressure up to 30.7 and 36.2 GPa, respectively, at room temperature. With pressure increases to ∼7.0 GPa, the structure of NaBi(WO{sub 4}){sub 2} begins to transform from tetragonal (I4{sub 1}/a) into monoclinic (P2/m), and the phase transition completes around 13 GPa. With pressure higher than 29.0 GPa, the NaBi(WO{sub 4}){sub 2} turns into amorphous state. The random arrangement of Na{sup +} and Bi{sup 3+} in short-range ordered scheelite NaBi(WO{sub 4}){sub 2} results in the tetragonal to monoclinic phase transition, which is different from that observed in AWO{sub 4} tungstates and AMoO{sub 4} molybdates (A=Ca, Sr, Ba, Pb, Eu, Cd). - Graphical abstract: The NaBi(WO{sub 4}){sub 2} transforms from tetragonal into monoclinic, which starts around 7 GPa and completes at about 13 GPa. With pressure higher than 29 GPa, the NaBi(WO{sub 4}){sub 2} turns into amorphous state. Highlights: ► Raman and X-ray diffraction studies performed on NaBi(WO{sub 4}){sub 2} up to 30.7 and 36.2 GPa, respectively. ► The tetragonal (I4{sub 1}/a) into monoclinic (P2/m) phase transition is determined. ► With pressure higher than 29 GPa, the NaBi(WO{sub 4}){sub 2} ultimately turns into amorphous state. ► The ambient pressure bulk modulus and volume of tetragonal and monoclinic phases are obtained.

OSTI ID:
22304560
Journal Information:
Journal of Solid State Chemistry, Vol. 200; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English