skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic transport and conduction mechanism transition in La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} thin films

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4883541· OSTI ID:22303999

We report on the electronic transport properties of epitaxial La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3}.

OSTI ID:
22303999
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English